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A theorem due to Kamenkov [l] states that there exists an equivalence between the stability
of periodic motions in the.critical cases with nonessential singularity, and the stability of
a steady-state motion in the critical case of a multiple zero root.

We extend this result to almost-periodic motions. We assume that the linear system is re-
ducible and, that the almosteperiodic coefficients of the right-hand sides of the differential
equations of perturbed motion can be represented in terms of finite Fourier series with arbi-
trary frequency spectra.

The author offﬂ shows the possibility of reducing the problem of stability of almost-
periodic mations to the investigation of the stability of a steady-state motion, but he only
deals with nonresonant cases. The present paper generalizes these results.

1. Let us consider a system of differential equations of perturbed motion, of the type

m )
T = Z Py + X2y, ey T t), X (zp-. ., z, i t)=2 Xi”) (g« - o x5 t)
j=1 >3
(i=1,...m) (1.1)
where p;; are constant coefficients and X; are holomorphic functions %y,.., % with almost~
periodic coefficients, which become zero when x; =...=x, = 0. We shall assume that the
almost-periodic coefficients can be written as finite Fourier series with arbitrary frequency

spectra.
As we know, any system whose nonlinear terms are of the form X, and whose linear tem

coefficients are periodic functions of the same period, can be reduced to {1.1). This is also
true in a number of cases when the linear term coefficients are almost=periodic.

We shall assume that the characteristic equation of the system (1.1) has k roots with
negative real parts and n roots with real parts equal to zero. Of the latter, p roots are equal
to zero and g pairs of roots are purely imaginary. In [2] it was shown that in the case with
nonessential singularity, the system (1.1) can be replaced with an abbreviated system

n
Yy =D, BtV W Y5 0)

k=1
(1.2)

N
Y, p - w i 0=20 YD,y ) (s=1...m)
=2
in which g, are constants and ¥, have the same structure as X;.
Eq |8,4 — O4x *| = 0 has p zero roots and g pairs of purely imaginary roots. The latter

have no restrictions imposed on them, they can be simple or multiple and any number of the
sets of solutions may correspond to them. We shall show, how, by means of a substitution
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given in [1], we can transform a subsystem of (1.2) with purely imaginary roots into another
subsystem with a multiple zero root.

We shall first sssume that the characteristic Eq. |g,; — 8 4 %| = 0 has only one pair of
purely imeginary roots 1i A of maltiplicity r, with a single set of solutions comesponding
to it. Linear substitution with constant coefficients transforms (1.2) into

n—tr £ = — Ay + 0;_ 6, + 8 (2, & M0 8)

2" = 8,2, +Z, (35, &, N, B
s El "k o ’ ﬂ5'=2'5j +55_1’?j.1+H5 (2, &, N, B (1.3}

(s,i=1,..,n=2r; j,v=1,...,r Gy=0)

Eq. |8 s — 8 4x %] = 0 has a (3 —-2)stuple zero root. All o)., can be assumed arbitrary
since the values 0,..., o, can be varied using the substitution
Es = Og1y, My = a¥s,..., & = 0,7, N = Ay,
followed by a suitable choice of @ 4,..., &, Retaining the previous notation for the varia-
bles, we shall assume that all o, are equal to A.
Introducing the substitution
& = =z cosht + y, sinht, 5= zjcosht + y;sinht + z;, cosht + y; | sinkt

n; = zy8inkt — yycosht, 1y = z;sinkt — yjcosht + z;_, sinkt — y; , cos At (1.4)
(=2,...,7)

we obtain n—ar

3= D) Gyt Ly (5 3 Yo D) (1.5)
k=1
1’1. - X]_ (zii Ty Yy t)l xj. = ;vxj“l + XJ (zi’ xv' Y t)

yl‘ =Y1 (Zi’ Lyr Yys t)l y]. = ijml + YJ (Z,‘-, Ty y\p t)
(s, i=1,...,n—=2r J=2,..,r v=1,...,71)

We easily see that in the above system the functions Z,,, X; and ¥, all have the struc-
ture of X, .

Characteristic equation of the subsystem in the variables z; and y; has a 2r-tuple zero
root with the corresponding two sets of solutions. If k sets of solutions (k L r) corresponded
to the multiple root i A, then the transformation (1.4) would follow the same course for
each set and, in the transformed system, the additional 2r-tuple zero root would have the
corresponding 2k sets of solutions.

In the general case of several pairs of purely imaginary roots, analogous manipulations
can be performed for each pair of simple roots, or for multiple, purely imaginary roots. This
will result in a system of the same n-th order, and the number of the corresponding sets of
solutions will be determined by the character of the purely imaginary roots and by the num-
ber of sets of solutions for the multiple zero root of {(1.2). We can write this system as

ys z,‘;_]_y‘_l +Yl (ylv AR ] y'n: t) (S= 1’ RIS | r; "0=0)
N X (1.6)
Y,=N Y@yt Y, O=34"0y" .y,
(2

where some or all %,,..., %, ; may be equal to zero, The asterisk replaces the index (kq,
«esy k) and the coefficients A * () are almost-periodic functions of ¢, which can be represen-
ted by finite Fourier series with arbitrary frequency spectra. For any such function f(¢), we
have
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1
{twa=gt +on, g=lim7\ 7 a

(=]

where ¢ (¢) is almost periodic and of the form [3] of ().

2. We shall now show that any system of the type (1.6) can be transformed into another

system, which will have constant coefficients accompanying nonlinear terms of arbitrary,
although finite order N. Thus the problem of stability of almost-periodic motions in the non
essentially singular cases will be reduced to an equivalent problem on stability of a steady~
state motion.

We shall assume that the coefficients of the forms ¥,(})(I <k ~ 1) in (1.6) are constant
while the coefficients of ¥, (%) are almost-periodic functions of time.

Let us introduce a substitution of the type

yy=z,+ s, Oy .. ™ byt b =k s=1...m (21
where u,* (t) are almost-periodic functions whose structure resembles that of 4,* (¢). Ex=
pression (2.1) easily yields

. k
y.=:ca+zv‘ @z ..oz, (it AR, DE) (2.2)

When &y + ..o+ ky = &, functions v, * (1) are equal to u,*(t), while when k; +...+ %k, > k,
functions v * (t) become polynomials u,* (¢) with distinct coefficients (ky,..., k,).
System (1.6) now becomes

o0
2; = ¥y Ty -+ Z X.(l) (""1' v T f) (g=1,..., 1 %=0) (2.3)
>3

where the forms X %) with I <k — 1 (s = 1,.u., n) are equal to Y.(“ with xz, replacing y,
and X, ) have the form

. k
X0 (g, i )= D) 0, @Oz oz, ey Pk, =ks=1,...,n)
Coefficients a * (¢} are given by
du’ - (s, k1, katl, Kepens, B)
a’(t)=— T:—-—- (k,»}i)nlu.(k' Lokerl, Ko k) — (kg 1) %40, "
(LTI - k
T L ) L T AR R R S I (3 (2.4)
Let us first determine the coefficient a,(9++++s 0%) yging
du(o‘..ok)
a(lo...ok) —_— ldt + A;O...Ok) (3)

This equation will have an almost-periodic solution for u,©+***» %%X¢) of the|form given

above, if
3

a:(lo,..Ok) =1lim ,;,.5 A;O...OR) (t)dt (2,5)
t—o0 o

Thus the coefficient a,®s***» 9% will either be a constant, or in a particular case, zero.
Having obtained a,(%+++» 9%) from (2.5), we find u,(%s==»» 9%} from
t
ul®- ) = S (AL (1) — al®-%) | dt
0
after which we can detemine either u(Oss++s 0s 15 k=1) op 5 (Oseses OK), Thg known magnis
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tades k% 3 u 0o+ O%) or % £0seees 0K) pyuat be related to the known coefficients
AfOseees 0y 1, ko1) op A (Oseess OK), The respective coefficients a(0seess 05 1, X=1) o g,(0/
++es 0K) will again be constant (or zero).

Continuing this process we shall find, that the k «h order forms appearing in {2.3) will
have constant coefficients, while all u,*(k; + ...+ k, = k) will be almost«periodic functions
of the same structare as 4,* (s).

Putting & equal to 2, 3,..., N, we shall obtain & system in which all the forms up to and
including the N<th order, will have constant coefficients, and this sliows us to formulate
the following theorem:

Theorem %1. 1f the system of Eqs. (1.1) is such that:

1) Eq. |pyy = 84 % = 0 has p zero roots, g pairs of purely imaginary roots and & roots
with negative reals parts;

2) functions X, are holomorphic in x,,4.., %, and become zero when x; == x,, = 0
while the coefficients of their expansions in powers of x, are almost-periodic functions of
t and can be represented by finite Fourier serles with arbitrary frequency spectra, then, in
the case with nonessential singularity the investigation of the stability of this system al-
ways leads to the equivalent problem of stability of a steady-state motion in the critical
case of (p + 2¢) zero roots.

N ote: Analogous results can be obtained after transforming (1.2) into (1.6), by redu~
cing {1.6) 1o the, so called, standard form and spplying the KrylowBogoliubov [4] transfor-
mation.
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