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A theorem due to Ksmenkov [ll states that there exists an equivalence between the stability 
of periodic motions in thccritical cases with nonessential singularity, and the stability of 

a steady-state motion in the critical case of a multiple zero root. 
We extend this result to almost-periodic motions. We assume that the linear system is re- 

ducible and, that the almost-periodic coefficients of the right-hand sides of the differential 
equations of perturbed motion can be represented in terms of finite Fourier series with arbi- 

trary frequency s ectra. 
The author of 21 shows the possibility of reducing the problem of stability of almost- P 

periodic motions to the investigation of the stability of a steady-state motion, but he only 
deals with nonresonant cases. The present paper generalizes these results. 

1. Let us consider a system of differential equations of perturbed motion, of the type 

co 

zt’ = 
i Pjjxj + x* (%I, **-* * zmi t)s Xi (“I?* * ** Zrn;, t)= 2 Xj(” (21, . . l , Zm; t) 

j=I 1>,a 
(i = 1, . . ., n-8) (f.i) 

where ~11 are constaut coefficients and Xi are holomorphic functions xl,..., r,,, with almost- 
periodic coefficients, which become zero when x1 =...= zm = 0. We shall assume that the 
almost-periodic coefficients can be written as finite Fourier series with arbitrary frequency 
spectra. 

As we know, eny system whose nonlinear terms are of the form X, and whose linear term 

coefficients are periodic functions of the same period, can be reduced to (1.1). This is also 
true in a number of cases when the linear term coefficients are almost-periodic. 

We shall assume that the characteristic equation of the system (1.1) has k roots with 
negative real parts and n roots with real parts equal to zero. Of the latter, p roots are equal 
to zero and q pairs of roots are purely imaginary. In [2] it was shown that in the case with 
nonessential singularity, the system (1.11 can be replaced with an abbreviated system 

)? 

Y,’ = 2 g&Y,+y; (Yp * * .I Yii; t) 
114 

N 

Y8 (Y,, . . -9 y,; 8) =-jJ Y8fQ (YIP *_a .I Y,i t) (s = 1, . . ., n) 

pa 

U.2) 

in which gek are constants and Y, have the same structure as X,. 

Eq. t s,n - a,, ?c\ = 0 has p zero roots and q pairs of purely imaginary roots. The latter 

have no restrictions imposed on them, they can be simple or multiple and any number of the 
sets of solutions may correspond to them. We shall show, how, by means of a substitution 
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givso in [I], we onn tramform a subsystem of (1.2) with purely imaginary roots into snother 
soboyatem with a multiple zero root. 

We shall first nssume that the characteristic Eq. lgek - 6sk%/ = 0 has only one pair of 

purely imaginary roots fi h of multiplicity r, with a single set of solutions corresponding 
to it. Linear substitution with constant coaf.ficiants tremsforms (1.2) into 

py 

tj’ = - xtlj + ajFIEj,~ + Bj (‘i? Ew tl,* t, 

5&zk+ 2, ("p Eqs rfvt % 

LE=l ttj'=%j +'j-$Jj-l tHj('f* Q* $yI ') (1.3) 

(s, i = 1, . . .( n--r; j,v=l,...,r; $=O) 

Eq. Iask - &sk%f = 0 bee a (n --2rktuple zero root. All 0f.t can be assnmed nrbitruy 

since the values [I~,..., o,t can be varied using the substitu~on 

El = %x3, ‘II = apYs,..., Er =: Q+, % = a,v, 
followed by a ruiteble choice of CC s,.,., a,. Retaining the previous notation .for the vadk 
bles, we shall assume that all cr,,t are equal to A. 

Introducing the substitution 

e1 e 21 CCdt + VI six&, Ej= ZjCOS1Lt + Vj sin ht + xj_lCOSIt + Vj_1 Shht 

'11 = x#G.t - vrco&, rfj = r@tkt - r/l CO& + Sj_1 sink - Vj_t CO9 5t (1.4) 

(1=2,..., r) 

we obtain VI---ar 

2; = 2 o*& + z*t @t* x”’ Y,* t) (1.5) 

$1’ = Xl ($* zvv ?C:P’~)! “j’ = hxj_l + xj fzi9 xv* Y,* t, 

Yi = y, (zi, xy~ Yv* t)* Yi = hYj_l + yj (‘is xvn Ys* t, 

(8, i=i,. . ., a-%; j-2, . . . . r; v=i ,...I r) 

We easily ses that in the above system the functions Z.1, X, and Y, all have the strut- 
ture of X,. 

Characteristic equation of the subsystem in the variables x, and 3 has a Zr-tuple zero 
root with the corresponding two sets of solutions. If k sets of solutions (&& rf corresponded 
to the multiple root fib, then the transfotmatiou (1.4) would follow the same course for 
each set and, in the transfoned system, the additional Or-tuple zero root would have the 
corresponding 2k sete of solutions. 

1x1 the general case of several pairs of purely imaginary roots, aualogous manipulations 
can be performed for each pair of simple roots, or for multiple, purely imaginary roota. This 
will result in a system of the same n-th order, and the number of the corresponding sets of 
solutions will be determined by the character of the purely imaginary roots end by the num- 
ber of eets of solutions for the multiple zero root of (1.2). We can write this system as 

Ya = X,_lY8_l 31 y* (Yp * * *, Y$ t) (s=1,...,n;%7J=0) 
N 0 4 

where some or a11 XI,..., x,,._~ may be equal to zero* The asterish replaces the index (kt, 
. . . . k,,) and the coefficients A,* (:I are almost-periodic functions of t, which CM be represen- 
ted by finite Fourier series with arbitrary frequency spectra. For any auch function f(t), we 
have 
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where #(t) is almoat periodic and of the form [3] of j(t). 

2. We shall now show that any system of the type (1.6) can be transformed into another 

system, which will have constant coefficisnte accompanying nonlinear terms of erbitrary, 
although finite order N. Thus the problem of stability of almost-periodic motions in the non- 
essentially singular caees will be reduced to an equivalent problem on stability of a ateady- 
state motion. 

We shall assume that the coefficienta of the forma Y,(f I(!,< k - 1) in (1.6) ue COBStSlLt 

while the coefficients of Ye(a) are almost-periodic functions of time. 
Let us introduce a enbatitution of the type 

YS = Z# + zf U#* (f) ytRi ‘* * * ynBn (kl+.~.+k,=k;s=f ,..., a) (2.1) 

where II*+ (t) are almost-periodic functions whose structure resembles that of A,* (t). EF 
prcsaion (2.1) easily yields 

Yi, = X8 -+ 2 or* (f) $1 . . * Znkn &-I-. . .+Jk,W) (2.2) 

When kt + . ..+ k, = k, functions ua+ (t) are equal to ~a* (t), while when kt +...+k, > k, 
functions ~a* (c) become polynomials sa +(I) with distinct coefficients (At,..,, k,h 

System (1.6) now becomes 
Q) 

where the forma X,cz) with 1\< k - 1 (s = I,..,, n) are 
and X,ck) have the form 

(8 =i,.. ., n; x0=0) (2.3) 

equal to Y,(l) with a. replacing y, 

(kt+...+k,,=k;rr=i ,..., n) 

Coefficients a a* (t) are given by 

u,'(t)= - 
l&b,’ (kl-1. k,+l, La,..., k,) _ (ks + i)x,u, (k" krl* k*'. k4+* '?B)-- 
x--(kr+i)w, 

-. . . - (k,+1) ~,,_p,(~~‘.” ‘tilt k n+l) + x,_& + A; (L) (2.4) 

Let us first determine the coefficient at(*““* ok)ueing 

(O...ok) 
&(o...Okt 

1. 
Sl =-- 

8 

~~~‘.*)(f) 

Thin equation will have an almost-periodic solution for alto,**** *‘tf of thei fotta given 
above, if 

t 

Thus the coefficient ot(‘*“** **) will either be s constant, or fn a particulu case, zero. 
Having obtsined at(****** Ok) from (2.5), we find syf*e**** Ok) from 

f 
(O...ok) = 

5 s 

[~~O".Ok' (Q_ Sp..W ] & 

0 

after which we cm datsnuine either ~t(~~***~ *I t* **t) or u~(*B**** Ok). The htown myal- 
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tndes k % ,,_t ~1(~@**** Ok) or lCt~$~~**** ‘lr)muet be related to the known coefficients 
..jl(o,...’ 0, tr k-1) or A ,jO,.*., Ok). The respective coefficients ot(O***** 01 t* k-t1 or sl(O* 

a**~ ok) will again be constant (or zero). 
Continuing this process we shall find, that the k 4 order forms appesring in (2.3) will 

have constant coefficients, while all ueC (k t + . ..+ k, = k) will be almost-periodic functions 
of the same structure as A,* ft). 

Patting k equal to 2, 3,..rl N, we shall obtsin a system in which all the forms up to and 
incloding the IV-th order, will have constant cosfficisnts, and this aIlows us to formulate 
the following theorem: 

T h e o I e m 2.1. If the system of Eqs. (1.1) is such that: 
1) Eq. lpll - 6,, q = 0 has p zero roota, g pairs of purely imaginary roots and k root8 

with negative reals parts; 
2) functions X, are holomorphic in x1,..., x, and become zero when x1 =...= xm = 0 

while the coefficienta of their expansions in powers of xI are almost-periodic functions of 
t aad can be represented by finite Foarier series with arbitrary freqnency spsctrs, then, in 
the case with nonessential singularity the investigation of the stability of this system al- 
ways leads to the equivalent problem of stability of a steadyatate motion in the critical 
case of (p + 29) zero roots. 

N o t e: Analogous results can be obtained after transforming (1.2) into (1.61, by redu- 
cing (1.6) to the, so called, standard fotm and applying the KrylorBogoliubov [4] transfor- 
mation. 
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